Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38721692

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Asunto(s)
Ratones Endogámicos mdx , Distrofia Muscular de Duchenne , Vaina de Mielina , Oligodendroglía , Animales , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Proliferación Celular , Distrofina/metabolismo , Distrofina/deficiencia , Distrofina/genética , Cuerpo Calloso/patología , Cuerpo Calloso/metabolismo , Ratones Endogámicos C57BL , Ratones , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/patología , Ventrículos Laterales/patología , Ventrículos Laterales/metabolismo , Modelos Animales de Enfermedad , Diferenciación Celular , Masculino
2.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664022

RESUMEN

Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.


Asunto(s)
Astrocitos , Diferenciación Celular , Linaje de la Célula , Dinaminas , Mitocondrias , Dinámicas Mitocondriales , Células-Madre Neurales , Neuronas , Oligodendroglía , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Mitocondrias/metabolismo , Ratones , Diferenciación Celular/genética , Linaje de la Célula/genética , Astrocitos/metabolismo , Astrocitos/citología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Neuronas/metabolismo , Neuronas/citología , Células Cultivadas , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Neurogénesis , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo
3.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583153

RESUMEN

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Asunto(s)
Diferenciación Celular , Ventrículos Laterales , Factor Inhibidor de Leucemia , Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Transducción de Señal
4.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38425213

RESUMEN

The size and shape of the cerebral cortex have changed dramatically across evolution. For some species, the cortex remains smooth (lissencephalic) throughout their lifetime, while for other species, including humans and other primates, the cortex increases substantially in size and becomes folded (gyrencephalic). A folded cortex boasts substantially increased surface area, cortical thickness, and neuronal density, and it is therefore associated with higher-order cognitive abilities. The mechanisms that drive gyrification in some species, while others remain lissencephalic despite many shared neurodevelopmental features, have been a topic of investigation for many decades, giving rise to multiple perspectives of how the gyrified cerebral cortex acquires its unique shape. Recently, a structurally unique germinal layer, known as the outer subventricular zone, and the specialized cell type that populates it, called basal radial glial cells, were identified, and these have been shown to be indispensable for cortical expansion and folding. Transcriptional analyses and gene manipulation models have provided an invaluable insight into many of the key cellular and genetic drivers of gyrification. However, the degree to which certain biomechanical, genetic, and cellular processes drive gyrification remains under investigation. This review considers the key aspects of cerebral expansion and folding that have been identified to date and how theories of gyrification have evolved to incorporate this new knowledge.


Asunto(s)
Corteza Cerebral , Neuronas , Animales , Humanos , Corteza Cerebral/metabolismo , Neuronas/metabolismo , Ventrículos Laterales/metabolismo , Primates
5.
J Cell Sci ; 137(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38305737

RESUMEN

Tight control over transcription factor activity is necessary for a sensible balance between cellular proliferation and differentiation in the embryo and during tissue homeostasis by adult stem cells, but mechanistic details have remained incomplete. The homeodomain transcription factor MEIS2 is an important regulator of neurogenesis in the ventricular-subventricular zone (V-SVZ) adult stem cell niche in mice. We here identify MEIS2 as direct target of the intracellular protease calpain-2 (composed of the catalytic subunit CAPN2 and the regulatory subunit CAPNS1). Phosphorylation at conserved serine and/or threonine residues, or dimerization with PBX1, reduced the sensitivity of MEIS2 towards cleavage by calpain-2. In the adult V-SVZ, calpain-2 activity is high in stem and progenitor cells, but rapidly declines during neuronal differentiation, which is accompanied by increased stability of MEIS2 full-length protein. In accordance with this, blocking calpain-2 activity in stem and progenitor cells, or overexpression of a cleavage-insensitive form of MEIS2, increased the production of neurons, whereas overexpression of a catalytically active CAPN2 reduced it. Collectively, our results support a key role for calpain-2 in controlling the output of adult V-SVZ neural stem and progenitor cells through cleavage of the neuronal fate determinant MEIS2.


Asunto(s)
Células-Madre Neurales , Factores de Transcripción , Animales , Ratones , Calpaína/genética , Calpaína/metabolismo , Diferenciación Celular , Proliferación Celular , Endopeptidasas/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Péptido Hidrolasas/metabolismo , Factores de Transcripción/metabolismo
6.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351133

RESUMEN

The subependymal zone (SEZ), also known as the subventricular zone (SVZ), constitutes a neurogenic niche that persists during postnatal life. In humans, the neurogenic potential of the SEZ declines after the first year of life. However, studies discovering markers of stem and progenitor cells highlight the neurogenic capacity of progenitors in the adult human SEZ, with increased neurogenic activity occurring under pathological conditions. In the present study, the complete cellular niche of the adult human SEZ was characterized by single-nucleus RNA sequencing, and compared between four youth (age 16-22) and four middle-aged adults (age 44-53). We identified 11 cellular clusters including clusters expressing marker genes for neural stem cells (NSCs), neuroblasts, immature neurons, and oligodendrocyte progenitor cells. The relative abundance of NSC and neuroblast clusters did not differ between the two age groups, indicating that the pool of SEZ NSCs does not decline in this age range. The relative abundance of oligodendrocyte progenitors and microglia decreased in middle-age, indicating that the cellular composition of human SEZ is remodeled between youth and adulthood. The expression of genes related to nervous system development was higher across different cell types, including NSCs, in youth as compared with middle-age. These transcriptional changes suggest ongoing central nervous system plasticity in the SEZ in youth, which declined in middle-age.


Asunto(s)
Células-Madre Neurales , Células Precursoras de Oligodendrocitos , Adulto , Persona de Mediana Edad , Adolescente , Humanos , Adulto Joven , RNA-Seq , Neuronas , Ventrículos Laterales/metabolismo , Neurogénesis/fisiología
7.
OMICS ; 27(12): 598-606, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055199

RESUMEN

High-grade gliomas (HGGs) are among the most aggressive brain tumors and are characterized by dismally low median survival time. Of the many factors influencing the survival of patients with HGGs, proximity to the subventricular zone (SVZ) is one of the key influencers. In this context, 5-amino levulinic acid fluorescence-guided multiple sampling (FGMS) offers the prospect of understanding patient-to-patient molecular heterogeneity driving the aggressiveness of these tumors. Using high-resolution liquid chromatography-mass spectrometry (MS)/MS proteomics for HGGs from seven patients (four SVZ associated and three SVZ nonassociated), this study aimed to uncover the mechanisms driving the aggressiveness in SVZ-associated (SVZ+) HGGs. Differential proteomics analysis revealed significant dysregulation of 11 proteins, of which 9 proteins were upregulated and 2 were downregulated in SVZ+ HGGs compared to SVZ-non-associated (SVZ-) HGGs. The gene set enrichment analysis (GSEA) of the proteomics dataset revealed enrichment of MYC targets V1 and V2, G2M checkpoints, and E2F targets in SVZ+ HGGs. With GSEA, we also compared the pathways enriched in glioma stem cell subpopulations and observed a similar expression trend for most pathways in our data. In conclusion, this study reveals new and emerging insights on pathways that may potentially contribute to greater aggressiveness in SVZ+ HGGs. Future studies using FGMS in larger cohorts are recommended to help uncover the proteomics and molecular basis of aggressiveness and stemness in HGGs.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Ventrículos Laterales/metabolismo , Ventrículos Laterales/patología , Proteómica , Fluorescencia , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo
8.
Res Vet Sci ; 164: 105025, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804666

RESUMEN

Neural stem cells are the effectors of adult neurogenesis, which occurs in discrete restricted areas of adult mammalian brain. In ovine species, like in rodents, in vivo incorporation of labeled DNA precursor led to characterize neurogenic proliferation in the subventricular zone and progeny migration and differentiation into the olfactory bulb. The present study addresses directly the existence of neural stem cells in the neurogenic niche of the vagal centre (area postrema) by in vitro neurosphere assay and RT-qPCR of specific markers on ex-vivo adult tissue explants, comparatively with the canonical neurogenic niche: the subventricular zone (SVZ) of the forebrain. Explants defined from the neuroanatomical patterns of in vivo BrdU incorporation yielded expandable and self-renewing spheres from both SVZ and AP. Within SVZ though, the density of sphere-forming cells was higher in ventral SVZ (SVZ-V) than in its latero-dorsal (SVZ-D) and lateral (SVZ-L) regions, which differs from the distributions of neural stem cells in mouse and swine brains. Consistently, RT-qPCR of the biomarker of neural stem cells, Sox2, yields highest expression in SVZ-V ahead of SVZ-D, SVZ-L and AP. These results are discussed with regard to previously published dynamics of adult ovine neurogenesis in vivo, and in light of corresponding features in other mammalian species. This confirms existence of neurogenetic plasticity in the vagal complex of adult mammals.


Asunto(s)
Células-Madre Neurales , Animales , Ovinos , Ratones , Porcinos , Células-Madre Neurales/metabolismo , Encéfalo/metabolismo , Ventrículos Laterales/metabolismo , Neurogénesis , Diferenciación Celular , Oveja Doméstica , Proliferación Celular
9.
Cells ; 12(19)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37830613

RESUMEN

The localization, expression, and physiological role of regulatory proteins in the neurogenic niches of the brain is fundamental to our understanding of adult neurogenesis. This study explores the expression and role of the E3-ubiquitin ligase, c-Cbl, in neurogenesis within the subventricular zone (SVZ) of mice. In vitro neurosphere assays and in vivo analyses were performed in specific c-Cbl knock-out lines to unravel c-Cbl's role in receptor tyrosine kinase signaling, including the epidermal growth factor receptor (EGFR) pathway. Our findings suggest that c-Cbl is significantly expressed within EGFR-expressing cells, playing a pivotal role in neural stem cell proliferation and differentiation. However, c-Cbl's function extends beyond EGFR signaling, as its loss upon knock-out stimulated progenitor cell proliferation in neurosphere cultures. Yet, this effect was not detected in hippocampal progenitor cells, reflecting the lack of the EGFR in the hippocampus. In vivo, c-Cbl exerted only a minor proneurogenic influence with no measurable impact on the formation of adult-born neurons. In conclusion, c-Cbl regulates neural stem cells in the subventricular zone via the EGFR pathway but, likely, its loss is compensated by other signaling modules in vivo.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Proteínas Proto-Oncogénicas c-cbl , Animales , Ratones , Diferenciación Celular , Receptores ErbB/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo
10.
Mol Biol Rep ; 50(10): 8163-8175, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37555870

RESUMEN

BACKGROUND: The presence of neural precursor stem cells (NPSCs) in some parts of the adult brain and the potency of these types of cells with a therapeutic viewpoint, has opened up a new approach for the treatment and recovery of the defects of central nervous system (CNS). Quercetin, as an herbal flavonoid, has been extensively investigated and shown to have numerous restoratives, inhibitory, and protective effects on some cell-lines and disorders. The purpose of this study is to simultaneously investigate the effect of quercetin on the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene and the effect on the proliferation and differentiation of NPSCs derived from the subventricular zone (SVZ) of the brain of adult rats. METHODS AND RESULTS: The cell obtained from SVZ cultured for one week and treated with quercetin at the concentrations of 1, 5, and 15 µM to evaluate the Nrf2 expression, proliferation and differentiation of NSCs after one week. Cellular and genetic results was performed by RT-PCR, MTT assay test, quantification of images with Image-J and counting. The results indicated that the quercetin increases expression of Nrf2 at concentration above 5 µM. Also differentiation and proliferation rate of NSCs is affected by various concentrations of quercetin in a dose-dependent manner. CONCLUSION: These findings confirmed the dose-dependent effect of quercetin on proliferation and differentiation of cell. In addition, quercetin increased the expression of Nrf2 gene. By combining these two effects of quercetin, this substance can be considered an effective compound in the treatment of degenerative defects in CNS.


Asunto(s)
Células-Madre Neurales , Quercetina , Ratas , Animales , Quercetina/farmacología , Quercetina/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Células-Madre Neurales/metabolismo , Diferenciación Celular , Ventrículos Laterales/metabolismo , Proliferación Celular
11.
Acta Neuropathol Commun ; 11(1): 96, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328883

RESUMEN

Pediatric high-grade gliomas (pHGG) are brain tumors occurring in children and adolescents associated with a dismal prognosis despite existing treatments. Therapeutic failure in both adult and pHGG has been partially imputed to glioma stem cells (GSC), a subset of cancer cells endowed with stem-like cell potential and malignant, invasive, adaptative, and treatment-resistant capabilities. Whereas GSC have largely been portrayed in adult tumors, less information has been provided in pHGG. The aim of our study was to comprehensively document the stem-like capacities of seven in-use pediatric glioma cell cultures (Res259, UW479, SF188, KNS42, SF8628, HJSD-DIPG-007 and HJSD-DIPG-012) using parallel in vitro assays assessing stem cell-related protein expression, multipotency, self-renewal and proliferation/quiescence, and in vivo investigation of their tumorigenicity and invasiveness. Data obtained from in vitro experiments revealed glioma subtype-dependent expression of stem cell-related markers and varying abilities for differentiation, self-renewal, and proliferation/quiescence. Among tested cultures, DMG H3-K27 altered cultures displayed a particular pattern of stem-like markers expression and a higher fraction of cells with self-renewal potential. Four cultures displaying distinctive stem-like profiles were further tested for their ability to initiate tumors and invade the brain tissue in mouse orthotopic xenografts. The selected cell cultures all showed a great tumor formation capacity, but only DMG H3-K27 altered cells demonstrated a highly infiltrative phenotype. Interestingly, we detected DMG H3-K27 altered cells relocated in the subventricular zone (SVZ), which has been previously described as a neurogenic area, but also a potential niche for brain tumor cells. Finally, we observed an SVZ-induced phenotypic modulation of the glioma cells, as evidenced by their increased proliferation rate. In conclusion, this study recapitulated a systematic stem-like profiling of various pediatric glioma cell cultures and call to a deeper characterization of DMG H3-K27 altered cells nested in the SVZ.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Ratones , Animales , Ventrículos Laterales/metabolismo , Glioma/genética , Neoplasias Encefálicas/patología , Encéfalo/patología , Técnicas de Cultivo de Célula
12.
Stem Cell Reports ; 18(7): 1482-1499, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37352848

RESUMEN

The adult subventricular zone (SVZ) is a neurogenic niche that continuously produces newborn neurons. Here we show that serine racemase (SR), an enzyme that catalyzes the racemization of L-serine to D-serine and vice versa, affects neurogenesis in the adult SVZ by controlling de novo fatty acid synthesis. Germline and conditional deletion of SR (nestin precursor cells) leads to diminished neurogenesis in the SVZ. Nestin-cre+ mice showed reduced expression of fatty acid synthase and its substrate malonyl-CoA, which are involved in de novo fatty acid synthesis. Global lipidomic analyses revealed significant alterations in different lipid subclasses in nestin-cre+ mice. Decrease in fatty acid synthesis was mediated by phospho Acetyl-CoA Carboxylase that was AMP-activated protein kinase independent. Both L- and D-serine supplementation rescued defects in SVZ neurogenesis, proliferation, and levels of malonyl-CoA in vitro. Our work shows that SR affects adult neurogenesis in the SVZ via lipid metabolism.


Asunto(s)
Ventrículos Laterales , Neurogénesis , Ratones , Animales , Ventrículos Laterales/metabolismo , Nestina/metabolismo , Neurogénesis/fisiología , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos
13.
Sci Adv ; 9(18): eabq7553, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146152

RESUMEN

The ventricular-subventricular zone (V-SVZ) is the largest neurogenic region of the postnatal forebrain, containing neural stem cells (NSCs) that emerge from both the embryonic pallium and subpallium. Despite of this dual origin, glutamatergic neurogenesis declines rapidly after birth, while GABAergic neurogenesis persists throughout life. We performed single-cell RNA sequencing of the postnatal dorsal V-SVZ for unraveling the mechanisms leading to pallial lineage germinal activity silencing. We show that pallial NSCs enter a state of deep quiescence, characterized by high bone morphogenetic protein (BMP) signaling, reduced transcriptional activity and Hopx expression, while in contrast, subpallial NSCs remain primed for activation. Induction of deep quiescence is paralleled by a rapid blockade of glutamatergic neuron production and differentiation. Last, manipulation of Bmpr1a demonstrates its key role in mediating these effects. Together, our results highlight a central role of BMP signaling in synchronizing quiescence induction and blockade of neuronal differentiation to rapidly silence pallial germinal activity after birth.


Asunto(s)
Ventrículos Laterales , Neuronas , Ventrículos Laterales/metabolismo , Diferenciación Celular/genética , Neurogénesis , Análisis de la Célula Individual
14.
Mol Neurobiol ; 60(3): 1195-1213, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36424468

RESUMEN

Despite the extensive use of the cuprizone (CPZ) demyelination animal model, there is little evidence regarding the effects of CPZ on a cellular level. Initial studies have suggested that oligodendrocytes (OL) are the main cell targets for CPZ toxicity. However, recent data have revealed additional effects on neural stem cells and progenitor cells (NSC/NPC), which constitute a reservoir for OL regeneration during brain remyelination. We cultured NSC/NPC as neurospheres to investigate CPZ effects on cell mechanisms which are thought to be involved in demyelination and remyelination processes in vivo. Proliferating NSC/NPC cultures exposed to CPZ showed overproduction of intracellular reactive oxygen species and increased progenitor migration at the expense of a significant inhibition of cell proliferation. Although NSC/NPC survival was not affected by CPZ in proliferative conditions, we found that CPZ-treated cultures undergoing cell differentiation were more prone to cell death than controls. The commitment and cell differentiation towards neural lineages did not seem to be affected by CPZ, as shown by the conserved proportions of OL, astrocytes, and neurons. Nevertheless, when CPZ treatment was performed after cell differentiation, we detected a significant reduction in the number and the morphological complexity of OL, astrogliosis, and neuronal damage. We conclude that, in addition to damaging mature OL, CPZ also reduces NSC/NPC proliferation and activates progenitor migration. These results shed light on CPZ direct effects on NSC proliferation and the progression of in vitro differentiation.


Asunto(s)
Enfermedades Desmielinizantes , Células-Madre Neurales , Ratones , Animales , Cuprizona/toxicidad , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Diferenciación Celular , Enfermedades Desmielinizantes/metabolismo , Ratones Endogámicos C57BL
15.
Nucleic Acids Res ; 50(16): 9319-9338, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36029179

RESUMEN

Topoisomerase IIA (TOP2a) has traditionally been known as an important nuclear enzyme that resolves entanglements and relieves torsional stress of DNA double strands. However, its function in genomic transcriptional regulation remains largely unknown, especially during adult neurogenesis. Here, we show that TOP2a is preferentially expressed in neurogenic niches in the brain of adult mice, such as the subventricular zone (SVZ). Conditional knockout of Top2a in adult neural stem cells (NSCs) of the SVZ significantly inhibits their self-renewal and proliferation, and ultimately reduces neurogenesis. To gain insight into the molecular mechanisms by which TOP2a regulates adult NSCs, we perform RNA-sequencing (RNA-Seq) plus chromatin immunoprecipitation sequencing (ChIP-Seq) and identify ubiquitin-specific protease 37 (Usp37) as a direct TOP2a target gene. Importantly, overexpression of Usp37 is sufficient to rescue the impaired self-renewal ability of adult NSCs caused by Top2a knockdown. Taken together, this proof-of-principle study illustrates a TOP2a/Usp37-mediated novel molecular mechanism in adult neurogenesis, which will significantly expand our understanding of the function of topoisomerase in the adult brain.


Asunto(s)
Células Madre Adultas , ADN-Topoisomerasas de Tipo II , Enzimas Desubicuitinizantes , Células-Madre Neurales , Neurogénesis , Animales , Ratones , Células Madre Adultas/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Activación Transcripcional/genética
16.
EMBO Rep ; 23(9): e54078, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35861333

RESUMEN

According to the current consensus, murine neural stem cells (NSCs) apically contacting the lateral ventricle generate differentiated progenitors by rare asymmetric divisions or by relocating to the basal side of the ventricular-subventricular zone (V-SVZ). Both processes will ultimately lead to the generation of adult-born olfactory bulb (OB) interneurons. In contrast to this view, we here find that adult-born OB interneurons largely derive from an additional NSC-type resident in the basal V-SVZ. Despite being both capable of self-renewal and long-term quiescence, apical and basal NSCs differ in Nestin expression, primary cilia extension and frequency of cell division. The expression of Notch-related genes also differs between the two NSC groups, and Notch activation is greatest in apical NSCs. Apical downregulation of Notch-effector Hes1 decreases Notch activation while increasing proliferation across the niche and neurogenesis from apical NSCs. Underscoring their different roles in neurogenesis, lactation-dependent increase in neurogenesis is paralleled by extra activation of basal but not apical NSCs. Thus, basal NSCs support OB neurogenesis, whereas apical NSCs impart Notch-mediated lateral inhibition across the V-SVZ.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Animales , Diferenciación Celular/genética , Femenino , Ventrículos Laterales/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Bulbo Olfatorio/metabolismo
17.
Sci Rep ; 12(1): 10544, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732806

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, and its incidence is predicted to increase worldwide. Striatal dopamine depletion caused by substantia nigra (SN) degeneration is a pathological hallmark of PD and is strongly associated with cardinal motor and non-motor symptoms. Previous studies have reported that exercise increases neuroplasticity and promotes neurorestoration by increasing neurotrophic factors and synaptic strength and stimulating neurogenesis in PD. In the present study, we found that rotarod walking exercise, a modality of motor skill learning training, improved locomotor disturbances and reduced nigrostriatal degeneration in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In addition, our exercise regimen improved MPTP-induced perturbation of adult neurogenesis in some areas of the brain, including the subventricular zone, subgranular zone, SN, and striatum. Moreover, rotarod walking activated the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and induced brain-derived neurotrophic factor (BDNF) expression in these regions. The results suggest that motor skill learning training using rotarod walking improves adult neurogenesis and restores motor performance by modulating the AMPK/BDNF pathway. Therefore, our findings provide evidence for neuroprotective effects and improved neuroplasticity in PD through motor skill learning training.


Asunto(s)
Enfermedad de Parkinson Secundaria , Caminata , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Enfermedad de Parkinson Secundaria/inducido químicamente , Sustancia Negra/metabolismo
18.
Stem Cell Reports ; 17(6): 1411-1427, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35523180

RESUMEN

The insulin receptor (INSR) is an evolutionarily conserved signaling protein that regulates development and cellular metabolism. INSR signaling promotes neurogenesis in Drosophila; however, a specific role for the INSR in maintaining adult neural stem cells (NSCs) in mammals has not been investigated. We show that conditionally deleting the Insr gene in adult mouse NSCs reduces subventricular zone NSCs by ∼70% accompanied by a corresponding increase in progenitors. Insr deletion also produced hyposmia caused by aberrant olfactory bulb neurogenesis. Interestingly, hippocampal neurogenesis and hippocampal-dependent behaviors were unperturbed. Highly aggressive proneural and mesenchymal glioblastomas had high INSR/insulin-like growth factor (IGF) pathway gene expression, and isolated glioma stem cells had an aberrantly high ratio of INSR:IGF type 1 receptor. Moreover, INSR knockdown inhibited GBM tumorsphere growth. Altogether, these data demonstrate that the INSR is essential for a subset of normal NSCs, as well as for brain tumor stem cell self-renewal.


Asunto(s)
Células Madre Adultas , Ventrículos Laterales/metabolismo , Células-Madre Neurales , Receptor de Insulina/metabolismo , Somatomedinas , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Ventrículos Laterales/citología , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Somatomedinas/metabolismo
19.
CNS Neurosci Ther ; 28(7): 1081-1092, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35481944

RESUMEN

AIMS: In this study, the effect of intracerebral ventricle injection with a miR-124-3p agomir or antagomir on prognosis and on subventricular zone (SVZ) neural stem cells (NSCs) in adult rats with moderate traumatic brain injury (TBI) was investigated. METHODS: Model rats with moderate controlled cortical impact (CCI) were established and verified as described previously. The dynamic changes in miR-124-3p and the status of NSCs in the SVZ were analyzed. To evaluate the effect of lateral ventricle injection with miR-124-3p analogs and inhibitors after TBI, modified neurological severity scores (mNSSs) and rotarod tests were used to assess motor function prognosis. The variation in SVZ NSC marker expression was also explored. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of predicted miR-124-3p targets was performed to infer miR-124-3p functions, and miR-124-3p effects on pivotal predicted targets were further explored. RESULTS: Administration of miR-124 inhibitors enhanced SVZ NSC proliferation and improved the motor function of TBI rats. Functional analysis of miR-124 targets revealed high correlations between miR-124 and neurotrophin signaling pathways, especially the TrkB downstream pathway. PI3K, Akt3, and Ras were found to be crucial miR-124 targets and to be involved in most predicted functional pathways. Interference with miR-124 expression in the lateral ventricle affected the PI3K/Akt3 and Ras pathways in the SVZ, and miR-124 inhibitors intensified the potency of brain-derived neurotrophic factor (BDNF) in SVZ NSC proliferation after TBI. CONCLUSION: Disrupting miR-124 expression through lateral ventricle injection has beneficial effects on neuroregeneration and TBI prognosis. Moreover, the combined use of BDNF and miR-124 inhibitors might lead to better outcomes in TBI than BDNF treatment alone.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Factor Neurotrófico Derivado del Encéfalo , MicroARNs , Células-Madre Neurales , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación hacia Abajo , Ventrículos Laterales/metabolismo , MicroARNs/metabolismo , Células-Madre Neurales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley
20.
Stem Cells ; 40(5): 493-507, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35349711

RESUMEN

DNA damage is assumed to accumulate in stem cells over time and their ability to withstand this damage and maintain tissue homeostasis is the key determinant of aging. Nonetheless, relatively few studies have investigated whether DNA damage does indeed accumulate in stem cells and whether this contributes to stem cell aging and functional decline. Here, we found that, compared with young mice, DNA double-strand breaks (DSBs) are reduced in the subventricular zone (SVZ)-derived neural stem cells (NSCs) of aged mice, which was achieved partly through the adaptive upregulation of Sirt1 expression and non-homologous end joining (NHEJ)-mediated DNA repair. Sirt1 deficiency abolished this effect, leading to stem cell exhaustion, olfactory memory decline, and accelerated aging. The reduced DSBs and the upregulation of Sirt1 expression in SVZ-derived NSCs with age may represent a compensatory mechanism that evolved to protect stem cells from excessive DNA damage, as well as mitigate memory loss and other stresses during aging.


Asunto(s)
Ventrículos Laterales , Células-Madre Neurales , Sirtuina 1 , Envejecimiento/genética , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Ventrículos Laterales/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...